Статті:

- Кушкевич М.В. Локалізація фізіологічного пріона й активність Na⁺–K⁺ АТФ-ази у тканинах пріон-реплікувальної системи щурів / М.В. Кушкевич, В.В. Влізло, Ю.В. Мартин // Біологічні Студії. – 2011. – Том 5, №3. – С. 67– 76.
- Кушкевич М.В. Імуногістохімічне виявлення фізіологічного пріона і активність Na⁺–K⁺ АТФ-ази у різних тканинах щурів / М.В. Кушкевич // Вісник ОНУ. Біологія. – 2012. – Т. 17, в. 1–2, (26–27). – С. 13–23.
- Kushkevych M. V. Localization and level of the cellular prion in the jejunum of the rats Wistar line of different age groups / M. V. Kushkevych, V. V. Vlizlo // Biological systems. – 2013. – Vol. 3. – P. 325–329.
- Кушкевич М.В. Локалізація клітинного пріона і активність Na⁺–K⁺- та Ca²⁺-АТФ-аз у селезінці щурів різного віку / М.В. Кушкевич, В.В. Влізло // Біологія тварин. – 2013. – Т. 15, № 2. – С. 81–89.
- Кушкевич М.В. Фізіологічний пріон і активність Na⁺,K⁺- та Ca²⁺-ATPa3 плазматичної мембрани клітин довгастого мозку щурів різного віку / М.В. Кушкевич, В.В. Влізло, Ю.В. Мартин // Укр. біохім. журн. – 2013. – Т. 85, № 2. – С. 52–58.
- Kushkevych M. V. Qualitative analysis of cellular prion in the cerebellum of the rats Wistar line of different age groups / M. V. Kushkevych, V. V. Vlizlo // The Animal Biology. – 2014. – Vol. 16, №4. – Р. 86–92. Тези:
- Kushkevych M. V. Cellular prion and Ca²⁺-ATP-ases activity in kidney of different age rats / M. V. Kushkevych, V. V. Vlizlo // Abstracts of reports of the Conference for Young Scientists Institute of Molecular Biology and Genetics, September 21–25th: Kyiv, 2015. – P. 32.
- Kushkevych M. V. Localization and level of cellular prion and activity of Ca²⁺-ATP-ases in the rats' liver depending on age / M. V. Kushkevych, V. V. Vlizlo // Abstracts of reports of the International Conference, October 2–3th: Lviv, 2015. – The Animal Biology. – vol. 17, № 3. – P. 178.

3.3. Активність іонних транспортерів та вміст іонів натрію та калію в органах щурів різного віку

3.3.1. Активність і кінетичні параметри Na⁺–K⁺-АТФ-ази та вміст Na⁺ і K⁺ у тканинах щурів різного віку. Na⁺–K⁺-АТФ-аза складається з двох субодиниць – трансмембранної, що володіє каталітичною активністю, та асоційованого з нею сіалоглікопротеїну (40 кДа). Цей протеїн не пронизує ліпідний бішар, а є розташований у мембрані на зовнішній поверхні. Вважають, що ця субодиниця виконує регуляторні функції, зокрема, зумовлює правильну орієнтацію ензиму в мембрані та відповідає за його антигенні властивості. Перша субодиниця має ділянки зв'язування для Na⁺ і АТФ на внутрішній поверхні цитоплазматичної мембрани, а для іонів калію й оуабаїну – на зовнішній [51, 211]. Регуляторні механізми зумовлюють зміну інтенсивності роботи ензиму, відповідно до потреб клітини. Це забезпечує адекватну відповідь на різні впливи та стійкість клітинного метаболізму.

Як відомо, PrP^{C} також є мембранним сіалоглікопротеїном, який розміщений на зовнішній поверхні клітинної мембрани та бере участь у транспортуванні іонів крізь мембрану та ін. [7, 12–14]. Оскільки обидва протеїни виконують подібні функції та мають подібну локалізацію, то припускаємо залежність між активністю ензиму та вмістом PrP^{C} .

Тому завданням було дослідити активність та кінетичні показники $Na^+-K^+-AT\Phi$ -ази та вміст відповідних іонів у пріон-реплікувальних та інших органах щурів різного віку. Зокрема, встановлено, що у порожній кишці та селезінці знижувалася активність ензиму ~ на 83 % у старих тварин, порівняно зі зрілими та молодими (рис. 3.34 *a*, *в*).

Натомість вміст іонів натрію у цих тканинах збільшувався на 36 %, а калію – вірогідно не змінювався (рис. 3.34 б, г).

Під час виконання кінетичного аналізу гідролізу АТФ проведено розрахунок кінетичних параметрів цього процесу та вивчено динаміку нагромадження продукту реакції – неорганічного фосфату (Ф_н).

Рис. 3.34. Активність Na⁺–K⁺-АТФ-ази і вміст іонів у порожній кишці (*a*, б) та селезінці (*в*, *г*) щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців; Примітки: (тут і надалі у цьому підрозділі M ± m; n=3; * (#) – P < 0,05; ** (##) – P < 0,01; *** (###) – P < 0,001, * – друга вікова група порівняно з першою, третя – з другою, # – третя з першою)

Для цього зразки тканин щурів різного віку інкубували у стандартному середовищі упродовж різних часових періодів.

Отримані дані підтвердили, що кінетичні криві гідролізу $AT\Phi$ у порожній кишці та селезінці мають тенденцію до насичення. Крім того, кінетика гідролізу $AT\Phi$ узгоджується з реакцією нульового порядку в діапазоні 0–5 хв (графік залежності продукту реакції від часу інкубації майже лінійний у цьому інтервалі часу; рис. 3.35 *a*, 3.36 *a*). Рівень вивільненого неорганічного фосфату Na⁺–K⁺-ATΦ-азою клітин порожньої кишки та селезінки старих тварин

різко знижувався – у 5 разів, порівняно зі зрілими та молодими тваринами.

Обчислено основні кінетичні властивості гідролізу АТФ, каталізованого досліджуваним ензимом у пріон-реплікувальних та інших тканинах, зокрема початкову (миттєву) швидкість реакції (V₀), максимальну кількість утвореного продукту реакції (P_{max}) і час реакції (τ). Розрахунки проведено на основі лінеаризації даних у {P/t; P} координатах (рис. 3.35 *б*, 3.36 *б*, табл. 3.1). Як видно з результатів досліджень, кінетичні параметри гідролізу АТФ (P_{max} та V₀) у порожній кишці та селезінці старих тварин достовірно знижувалися – на 58 та 80 % і 89 та 82 %, відповідно, порівняно зі зрілими. Проте час реакції у цих тканинах поступово зростав з віком щурів (табл. 3.1).

На наступному етапі виконано кінетичний аналіз реакції гідролізу АТФ залежно від його концентрації у середовищі інкубування. Встановлено, що зі збільшенням концентрації субстрату (АТФ) від 0,25 до 2,5–3,0 ммоль/л відбувалося монотонне зростання ензиматичної Na⁺–K⁺-АТФ-азної активності до її максимальних значень, після чого активність підтримувалася на незмінному рівні. Проте, у тканинах старих тварин активність була незначною і крива значень на графіку виходила на плато за 2,0 ммоль/л АТФ (рис. 3.35 *e*, 3.36 *e*). Для з'ясування можливого механізму змін активності Na⁺–K⁺-АТФ-ази у порожній кишці та селезінці визначено кінетичні параметри реакції за впливу різних концентрацій АТФ, такі як максимальна швидкість (V_{max}) та константа Міхаеліса ($K_m^{AT\Phi}$). Їх визначення проведено внаслідок лінеаризації отриманих даних у координатах Лайнуївера – Берка (рис. 3.35 *e*, 3.36 *e*). Так у порожній кишці та селезінці тридцятимісячних тварин обидва показники стрімко знижувалися в 2,5–11 разів, порівняно зі шестимісячними, тоді як порівняно з одномісячними – у 6–21 разів (табл. 3.1).

Відомо, що АТФ-транспортні системи залучені до транспортування іонів натрію і калію, які функціонують як Na⁺–K⁺-помпи [51]. У зв'язку з цим інтерес представляє дослідження впливу цих іонів на активність ензиму залежно від їх різної концентрації у середовищі інкубування.

Рис. 3.35. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині порожньої кишки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.36. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині селезінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Таблиця 3.1

	Порожня киш	ика; (n=3)				
Кінетичні параметри		Вік тварин, міс				
	1	6	30			
V ₀ (мкмоль Ф _н /хв× мг ⁻¹ протеїну)	0,853	0,532*	0,221**###			
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	0,903	0,680	0,138***###			
τ (хв)	1,058	1,279	1,823*			
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	4,919	2,645*	0,234***### 0,822***###			
К _т (ммоль/л)	7,632	3,287**				
	Селезінка	; (n=3)				
Vinomuni Hoporom	Вік тварин, міс					
Кінетичні параметри	1	6	30			
V ₀ (мкмоль Ф _н /хв× мг⁻¹ протеїну)	1,317	0,948	0,105***###			
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,152	0,938	0,167***###			
τ (хв)	0,875	0,989	1,580*#			
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	5,030	2,464**	0,315***###			
К _т (ммоль/л)	6,529	2,583**	1,076**###			

Кінетичні параметри гідролізу АТФ

Примітки. (тут і надалі у цьому підрозділі) 1) V₀ – початкова (миттєва) швидкість реакції; 2) Р_{тах} – максимальна (платова) кількість продукту реакції; 3) т – час реакції (період напівнасичення); 4) V_{тах} – максимальна швидкість ензиматичної реакції; 5) K_m – константа Міхаеліса

Для вивчення впливу Na⁺ і K⁺ у середовищі інкубування на активність Na⁺–K⁺-АТФ-ази NaCl був замінений ізотонічним KCl (загальна концентрація іонів натрію і калію становила 150 ммоль/л).

Очевидно, що активність Na⁺–K⁺-АТФ-ази у порожній кишці та селезінці залежала від концентрації іонів. Крім того, встановлено оптимальне співвідношення концентрації іонів для функціонування цього ензиму у порожній кишці та селезінці тварин віком один і шість місяців – 120 ммоль/л Na⁺ та 30 ммоль/л K⁺. Натомість у тканинах щурів віком тридцять місяців цей оптимум був дещо іншим і становив 140 ммоль/л Na⁺ і 10 ммоль/л K⁺ (див. рис. 3.35 *г*, 3.36 *г*). Тобто з віком зростає спорідненість ензиму до іонів натрію. За

відсутності одного з видів іонів у середовищі, активність АТФ-ази не вдавалось виміряти, очевидно, що для реакції гідролізу АТФ необхідні два види іонів.

Досліджували вплив різних концентрацій протеїну в інкубаційній суміші на вивільнення неорганічного фосфату. Ця залежність вивчалася у діапазоні концентрацій від 25 до 150 мкг протеїну/мл. Встановлено, що поступове збільшення концентрації протеїну у зразках тканин, які вносили ДО інкубаційного середовища, призводило до підвищення рівня неорганічного фосфату. Проте максимуми нагромадження Ф_н дещо відрізнялися у тканинах тварин різного віку. Зокрема, у порожній кишці одномісячних щурів вивільнення Ф_н було максимальним за 115 мкг протеїну/мл, а у селезінці – за 125 мкг протеїну/мл, тоді як у шестимісячних- за 100 та 115 мкг протеїну/мл, відповідно. У старих тварин реакція гідролізу АТФ була дуже незначною. На це вказує невисокий рівень вивільненого Ф_н, максимум якого відзначили за 50 мкг протеїну/мл у порожній кишці та 75 мкг протеїну/мл – у селезінці. Загалом, підвищення концентрації протеїну до 150 мкг/мл призводило до зниження рівня $\Phi_{\rm H}$ у досліджуваних тканинах щурів (див. рис. 3.35 *д*, 3.36 *д*).

Дослідження активності $Na^+-K^+-AT\Phi$ -ази, а також вмісту Na^+ і K^+ у печінці та нирках щурів різного віку показало, що зниження активності ензиму, відповідно, на 48 та 63 %, і підвищення вмісту Na^+ на 47 та 39 % настає у старих тварин, порівняно з молодими. Вміст іонів калію вірогідно не змінювався (рис. 3.37).

За визначення рівня $\Phi_{\rm H}$, який вивільнений Na⁺–K⁺-АТФ-азою у печінці та нирках, доведено, що його вміст поступово зростав упродовж 10 хв, а потім зберігався на сталому рівні (рис. 3.38 *a*, 3.39 *a*). Проте у тканинах тридцятимісячних тварин нагромадження неорганічного фосфату було удвічі меншим, порівняно зі шестимісячними. Провівши лінеаризацію даних у {P/t; P} координатах, визначено кінетичні параметри гідролізу АТФ (рис. 3.38 *б*, 3.39 *б*).

Останні вірогідно відрізнялися у тканинах щурів тридцятимісячного віку. На основі максимальної кількості продукту реакції (P_{max}), розраховано початкову (миттєву) швидкість ензиматичної реакції (V_0). Як показано у табл. 3.2, у печінці та нирках значення обох показників поступово зменшувалося з віком тварин, тоді як час реакції (τ) – збільшився на 15 та 35 %, відповідно, у старих щурів порівняно зі зрілими.

Рис. 3.37. Активність Na⁺–K⁺-АТФ-ази і вміст іонів у печінці (*a*, б) та нирках (*в*, *г*) щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Визначали активність Na⁺–K⁺-АТФ-ази за різних концентрацій субстрату у середовищі інкубування. Максимальних значень активність набувала за 2,5 ммоль/л АТФ і майже не змінювалася – за умов подальшого зростання концентрації субстрату (рис. 3.38 *в*, 3.39 *в*). Проте у печінці та нирках старих тварин активність ензиму була удвічі нижчою, порівняно зі зрілими. Провівши лінеаризацію отриманих у цьому експерименті даних у координатах Лайнуївера–Берка, визначили кінетичні параметри реакції максимальну швидкість (V_{max}) та константу Міхаеліса (K_m^{ATΦ}; рис. 3.38 *г*, 3.39 *г*).

Рис. 3.38. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині печінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера– Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Рис. 3.39. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині нирок (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

В обох тканинах V_{max} знижувалося на 66–85 % зі зростанням віку лабораторних тварин, тоді як K_m – на 63–84 % (табл. 3.2).

Таблиця 3.2

Печінка; (n=3)					
Кінетичні параметри	інетичні параметри Вік тварин, міс				
	1	6	30		
V_0 (мкмоль $\Phi_{\rm H}/{ m xB} imes$ мг ⁻¹ протеїну)	0,538 0,396		0,262*#		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,311	1,089	0,588*#		
τ (хв)	2,437	2,750	3,244		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	3,954	2,953	0,993***### 1,009**###		
К _т (ммоль/л)	4,222	2,728*			
	Нирки; (n=3)			
Vinotuni noponoton	Вік тварин, міс				
Кінстичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	0,698	0,569	0,159***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,057	0,893	0,382**##		
τ (хв)	1,514	1,569	2,399*#		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	2,532	4,409*	0,646***###		
К _т (ммоль/л)	2,859	6,120**	1,000***###		

Кінетичні параметри гідролізу АТФ

Досліджували вплив іонів за різних концентрацій у середовищі на активність ензиму. Встановлено, що максимальних значень вона набула за 120 ммоль/л Na⁺ та 30 ммоль/л K⁺ у печінці та нирках одно- і шестимісячних щурів. Проте в обох тканинах тридцятимісячних тварин цей максимум відзначили за 130 ммоль/л Na⁺ та 20 ммоль/л K⁺ (див. рис. 3.38 *г*, 3.39 *г*).

Виділення неоганічного фосфату $Na^+-K^+-AT\Phi$ -азою залежало від рівня протеїну у зразках тканин в інкубаційному середовищі. У печінці одномісячних та шестимісячних тварин максимум вивільнення відзначили за 125 мкг протеїну/мл, а тридцятимісячних — за 100 мкг протеїну/мл. Проте у нирках ці значення становили, відповідно, 125, 115 та 75 мкг протеїну/мл (див. рис. 3.38 *д*, 3.39 *д*). Поступове зниження активності Na⁺–K⁺-АТФ-ази зі зростанням віку щурів установлено у стегновому м'язі (рис. 3.40).

Рис. 3.40. Активність Na⁺–K⁺-АТФ-ази (*a*) і вміст іонів (б) у стегновому м'язі щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Нагромадження неорганічного фосфату також зменшилося на 43 % у старих тварин, порівняно зі зрілими (рис. 3.41 *a*). Щодо кінетичних параметрів, то V₀ та P_{max} зменшилися на 63 та 49 % у старих тварин порівняно зі зрілими, тоді як значення τ , навпаки, збільшилося (рис. 3.41 *б*, табл. 3.3).

За впливу АТФ у різних концентраціях насичення ензиму в тканині трьох вікових груп наступало за 2,5 ммоль/л (рис. 3.41 *в*). Значення кінетичних параметрів, які визначені за цих умов, V_{max} та K_m , зменшилося, відповідно, на 70 та 20 % у тканині старих тварин, порівняно з молодими (рис. 3.41 *г*, табл. 3.3).

Співвідношення концентрації іонів, за якого активність Na⁺–K⁺-АТФ-ази була максимальною, становило у молодих тварин 120 ммоль/л Na⁺ і 30 ммоль/л K⁺, у зрілих – 130 ммоль/л Na⁺ і 20 ммоль/л K⁺ та старих – 140 ммоль/л Na⁺ та 10 ммоль/л K⁺ (рис. 3.41 *г*).

Досліджуючи вплив різних концентрацій протеїну у середовищі інкубування на нагромадження продукту реакції, було встановлено, що його максимальний рівень вивільнився за 125, 100 та 75 мкг протеїну/мл, відповідно,

Рис. 3.41. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині стегнового м'язу (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (δ); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (∂)

100

Кінетичні параметри	Вік тварин, міс				
	1; (n=3)	6; (n=3)	30; (n=3)		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	0,634	0,457	0,170**###		
Р _{тах} (мкмоль Ф _н / мг протеїну) 1,357		0,742*	0,379*###		
τ (хв)	2,141	1,622	2,237*		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	4,195	1,885**	1,245*###		
К _т (ммоль/л)	4,364	2,342*	3,450*		

Кінетичні параметри гідролізу АТФ у тканині стегнового м'язу

у стегновому м'язі одно-, шести- та тридцятимісячних щурів (рис. 3.41 д).

Активність Na⁺–K⁺-AT Φ -ази та вміст іонів визначали у довгастому мозку та мозочку. Встановлено зниження активності в обох тканинах тридцятимісячних тварин ~ на 70 %, вміст K⁺ вірогідно не змінився, а Na⁺ – збільшився на 48 та 42 % у старих тварин порівняно з молодими, відповідно (рис. 3.42).

Подібною була також вікова динаміка вивільнення $\Phi_{\rm H}$ у цих тканинах (рис. 3.43 *a*, 3.44 *a*). Значення V₀ та P_{max} також зменшувалися з віком – на 80 і 70 % у довгастому мозку та 81 і 64 % – у мозочку, проте, як і в інших тканинах, т збільшилося на 35–48 % (рис. 3.43 *б*, 3.44 *б*, табл. 3.4).

Оптимальне значення концентрації АТФ становило 2,5 ммоль/л, подальше збільшення якого не призводило до суттєвого зростання активності ензиму в довгастому мозку та мозочку тварин віком один та шість місяців (рис. 3.43 *в*, 3.44 *в*). Проте у старих тварин дещо відрізнялося – 2,0–2,5 ммоль/л.

Значення V_{max} знизилося на 66 та 86 %, відповідно, у довгастому мозку та мозочку старих тварин, порівняно зі зрілими, тоді як K_m – на 12 та 73 % (рис. 3.43 *г*, 3.44 *г*, табл. 3.4).

За впливу 120 ммоль/л Na⁺ та 30 ммоль/л K⁺ активність Na⁺–K⁺-АТФ-ази була максимальною у довгастому мозку молодих тварин, за 130 ммоль/л Na⁺ та 20 ммоль/л K⁺ – у зрілих і 140 ммоль/л Na⁺ та 10 ммоль/л K⁺ – у старих (рис. 3.43 *г*).

У мозочку щурів першої та другої вікових груп оптимальним було співвідношення 120 ммоль/л Na⁺ та 30 ммоль/л K⁺, тоді як у третьої – 140 ммоль/л Na⁺ та 10 ммоль/л K⁺ (рис. 3.44 *r*).

Нагромадження Ф_н в обох тканинах було найінтенсивнішим за 125, 115 та 75 мкг протеїну/мл, відповідно, в одно-, шести- та тридцятимісячних щурів (рис. 3.43 *д*, 3.44 *д*).

Рис. 3.42. Активність Na⁺–K⁺-АТ Φ -ази і вміст іонів у довгастому мозку (*a*, *б*) та мозочку (*в*, *г*) щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

За нормальних умов PrP^{C} регулює активність $Na^+-K^+-AT\Phi$ -ази, активуючи останню в умовах стресу. Під час TCE, тобто за умов можливої конверсії PrP^{C} у патологічну форму, функціональна активність ензиму суттєво знижується.

Рис. 3.43. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині довгастого мозку (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.44. Динаміка вивільнення $\Phi_{\rm H}$ у процесі гідролізу АТФ у тканині мозочка (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера– Берка (*г*); вплив іонів Na⁺ і K⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Таблиця 3.4

Довгастий мозок; (n=3)					
Кінетичні параметри		Вік тварин, міс			
	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	0,656	0,501	0,098***###		
Р _{тах} (мкмоль Ф _н / мг протеїну)	1,217	0,858*	0,257***###		
τ (хв)	1,856	1,712	2,621*		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	3,860	2,446*	0,818***### 3,367		
К _т (ммоль/л)	3,973	2,953			
	Мозочок;	(n=3)			
Vinomuni Hopovompu		Вік тварин, міс			
Кінетичні параметри	1	6	30		
V ₀ (мкмоль Ф _н /хв× мг⁻¹ протеїну)	0,826	0,722	0,136***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	_{max} (мкмоль Ф _н / мг протеїну) 1,551		0,321**###		
τ (хв)	1,878	1,223*	2,356* 0,737***###		
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	5,053	5,187			
К _т (ммоль/л)	4,995	6,330	1,710***###		

Кінетичні параметри гідролізу АТФ

Зміна структури α -субодиниці Na⁺–K⁺-АТФ-ази у *Drosophila* призводить до значного ушкодження нейронів і помітного скорочення тривалості життя [212]. Внаслідок тривалого інгібування активності цього ензиму встановлено губкоподібну вакуолізацію, подібну до тієї, яка спостерігається під час TCE [213]. Крім того, Na⁺–K⁺-АТФ-аза є ізольованою на поверхні нейронів та астроцитів і, за наявності токсичних позаклітинних фібрилярних відкладень, негативний вплив на її функціонування є подвійним. Разом цього може бути достатньо, щоб ініціювати каскад внутрішньоклітинних механізмів, які спрямовані на загибель нейронів [50].

Отже, у досліджуваних тканинах старих тварин активність Na⁺–K⁺-АТФ-ази знижується на 43–84 %, реакція гідролізу АТФ відбувається менш інтенсивно і триває довше, а продукт нагромаджується у меншій кількості, порівняно з одно- та шестимісячними тваринами. Крім того,

зниження величини V_{max} зумовлене зменшенням кількості транспортувальних одиниць (зменшення їх експресії у мембрані) або зменшенням кількості обертів субстрату, Концентрація ензиму. за якого відбувається насичення Na⁺-К⁺-АТФ-ази, знижується з віком, крім того зменшення величини константи К_т у тканинах старих тварин вказує на зростання спорідненості ензиму до субстрату. Варто зазначити, що оптимум співвідношення концентрації іонів зміщується у напрямку зростання вмісту Na⁺, що узгоджується зі зростанням рівня цих іонів у тканині загалом. Тобто, можна припустити, що з віком порушується Na⁺-K⁺ електрохімічний градієнт цитоплазматичної мембрани клітин унаслідок зниження активності Na⁺-K⁺-АТФ-ази.

3.3.2. Активність та кінетичні параметри Ca²⁺-АТФ-аз і вміст загального кальцію у тканинах щурів різного віку. Група ензимів Ca²⁺-ATФаз переносять іони кальцію з цитоплазми в позаклітинне середовище або внутрішньоклітинні депо за рахунок енергії гідролізу АТФ, підтримуючи тим самим низьку концентрацію Ca²⁺ у цитоплазмі. Цей процес забезпечує регуляцію клітинних функцій внаслідок збільшення проникності клітинних мембран для Ca²⁺: надходячи у клітину, ці іони активують внутрішньоклітинні процеси. Вони надходять пасивно, внаслідок відкривання Ca²⁺-каналів, які пов'язані з різними рецепторами. Кальцієві АТФ-ази входять до складу цитоплазматичних мембран і внутрішньоклітинних мембран. Це мономерні протеїни, які складаються з єдиного поліпептидного ланцюга, проте Ca^{2+} -AT Φ -a3a Так, відрізняються молекулярною за масою. ендо(сарко)плазматичної сітки (ЕПС) має молекулярну масу 108 кДа, а плазматичної мембрани (ПМ) – 120 кДа. Використовуючи різні методи, вдалося встановити, під гідролізу однієї молекули ATΦ ЩО час Са²⁺-АТФ-аза ЕПС переносить два іони кальцію з навколишнього середовища везикул. Перенесення Ca²⁺ супроводжується перенесенням всередину електричних зарядів, але різниця потенціалу на мембрані не утримується, тому що мембрана ЕПС добре проникна для інших іонів [62, 63].

Оскільки PrP^C бере участь у різних процесах метаболізму, зокрема

залучений в транспортування іонів крізь мембрану, а також у регуляцію Ca^{2+} каналів, підтримуючи Ca^{2+} -гомеостаз [13, 14, 214], то припускають залежність між вмістом PrP^{C} та активністю АТФ-аз. Тому на наступному етапі досліджували активність та кінетичні параметри Ca^{2+} -АТФ-ази ендоплазматичної сітки (ЕПС) та Ca^{2+} -АТФ-ази плазматичної мембрани (ПМ) і вміст Ca^{2+} у пріон-реплікувальних тканинах щурів різного віку.

У результаті проведених досліджень установлено зниження активності досліджуваних ензимів зі зростанням віку щурів. Зокрема, активність Ca^{2+} -АТФ-ази ЕПС зменшувалася на 89 % у порожній кишці старих тварин, порівняно зі зрілими та молодими. За цих умов активність Ca^{2+} -АТФ-ази ПМ зменшилася на 26 % (рис. 3.45 *a*). Вміст Ca^{2+} у досліджуваній тканині старих тварин збільшився у 4,5–5 разів порівняно зі зрілими та молодими (рис. 3.45 *б*).

Рис. 3.45. Активність Ca²⁺-АТФ-аз (*a*) і вміст загального кальцію (б) у порожній кишці щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Визначено вікову динаміку $\Phi_{\rm H}$, який вивільнений Ca²⁺-AT Φ -азами у порожній кишці. Його вміст стрімко зростав упродовж десяти хвилин, а потім зберігався на сталому рівні. Проте, у тканині старих тварин нагромадження $\Phi_{\rm H}$ Ca²⁺-AT Φ -азою ЕПС було у 9 разів меншим, порівняно зі зрілими (рис. 3.46 *a*, 3.47 *a*). Провівши лінеаризацію даних, визначено кінетичні параметри гідролізу АТ Φ (рис. 3.46 *б*, 3.47 *б*).

Рис. 3.46. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині порожньої кишки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.47. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині порожньої кишки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Як показано у табл. 3.5, значення V₀ та P_{max} для Ca²⁺-ATФ-ази ЕПС та Ca²⁺-ATФ-ази ПМ зменшилося на 83–91 % та 34 %, відповідно, у старих щурів, порівняно зі зрілими, а порівняно з молодими – на 87–91 % та 12–24 %.

Таблиця 3.5

Са ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,246	0,905	0,153***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,187	3,315	0,285***###		
τ (хв)	2,557	3,663*	1,861*		
V_{max} (мкмоль $\Phi_{H}/x_{B} \times Mr^{-1}$ протеїну)	9,766	8,803	0,312***### 0,597***###		
К _т (ммоль/л)	7,677	7,113			
	Ca ²⁺ -АТФ-аза	л ПМ; (n=3)			
Kinetumi nepemetru	Вік тварин, міс				
Кистичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,054	0,792	0,795		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,840	2,437	1,606*		
τ (хв)	1,745	3,077*	2,021*		
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	хмоль Ф _н /хв× 2,383 протеїну)		2,434*		
К _т (ммоль/л)	1,340	2,793*	1,991*#		

Кінетичні параметри гідролізу АТФ у тканині порожньої кишки

Досліджуючи активність Ca²⁺-ATФ-ази ЕПС та Ca²⁺-ATФ-ази ПМ за різних концентрацій АТФ у середовищі інкубування, було встановлено, що максимальних значень активність набувала за наявності 2,5 ммоль/л АТФ і не змінювалася – за умов подальшого зростання концентрації субстрату (див. рис. 3.46 *в*, 3.47 *в*). Внаслідок проведення лінеаризації отриманих у цьому експерименті даних у координатах Лайнуївера–Берка, визначено кінетичні параметри реакції – максимальну швидкість (V_{max}) та константу Міхаеліса (K_m^{ATΦ}; див. рис. 3.46 *г*, 3.47 *г*, табл. 3.5). Обидва показники для Ca²⁺-ATΦ-ази ЕПС та Ca²⁺-ATΦ-ази ПМ суттєво знижувалися зі зростанням віку лабораторних тварин, відповідно, на 96 та 92 % а також на 34 та 30 %. За впливу різних концентрацій Ca²⁺ на активність ензимів встановили, що максимальних значень Ca²⁺-ATФ-аза ЕПС набула за 5 ммоль/л в порожній кишці одно- та шестимісячних тварин і 7 ммоль/л – у тридцятимісячних. Тоді як для Ca²⁺-ATФ-ази ПМ ці показники становили 5 ммоль/л у молодих і зрілих щурів та 6 ммоль/л – у старих (див. рис. 3.46 *г*, 3.47 *г*).

Вивільнення $\Phi_{\rm H}$ Ca²⁺-AT Φ -азами залежало від рівня протеїну у зразках тканин. Для обох ензимів максимум вивільнення відзначали за 125 мкг протеїну/мл, проте для Ca²⁺-AT Φ -ази ЕПС тридцятимісячних тварин це значення становило 75 мкг протеїну/мл (див. рис. 3.46 *д*, 3.47 *д*).

Активність Ca²⁺-ATФ-ази ЕПС у селезінці шести та тридцятимісячних щурів була, відповідно, на 13 та 84 % нижчою, порівняно з тваринами одно- та шестимісячного віку. Щодо Ca²⁺-ATФ-ази ПМ, то її активність за цих умов зменшилася, відповідно, на 16 та 68 %. У старих тварин активність обох ензимів зменшилася, відповідно, на 86,4 та 73,3 %, порівняно з молодими (рис. 3.48 *a*). Натомість суттєвим було підвищення рівня кальцію у тканині старих тварин – на 57 та 80 %, відповідно, порівняно зі зрілими та молодими (рис. 3.48 *б*).

Рис. 3.48. Активність Ca²⁺-АТФ-аз (*a*) і вміст загального кальцію (б) у селезінці щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Вивільнення $\Phi_{\rm H}$ досліджуваними ензимами тривало упродовж 10 хв, після чого підтримувалося на сталому рівні. Крім того, його інтенсивність знижувалася, відповідно, у 7 та 4 рази у селезінці старих тварин, порівняно зі зрілими (рис. 3.49 *a*, 3.50 *a*).

За рівнянням лінійної функції визначені кінетичні показники для Ca²⁺-АТФ-ази ЕПС та Ca²⁺-АТФ-ази ПМ – P_{max} та V₀, значення яких зменшилося у селезінці тридцятимісячних тварин, відповідно, на 64 і 89 % та 76 і 68 %, порівняно зі шестимісячними (рис. 3.49 *б*, 3.50 *б*, табл. 3.6).

Очевидно, що на активність ензимів впливала концентрація субстрату. Зокрема, насичення Ca²⁺-ATФ-ази ЕПС АТФ наступало за 2,5–3,0 ммоль/л у тварин різних вікових груп, тоді як Ca²⁺-ATФ-ази ПМ – за 2,0–2,5 ммоль/л (рис. 3.49 *в*, 3.50 *в*). Значення V_{max} та K_m для обох ензимів вірогідно зменшувалося зі зростанням віку щурів (рис. 3.49 *г*, 3.50 *г*, табл. 3.6).

Таблиця 3.6

Са ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
	1	6	30		
V_0 (мкмоль $\Phi_{\rm H}$ /хв× мг ⁻¹ протеїну)	0,951	0,485*	0,174**###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	2,078	2,111	0,238***###		
τ (хв)	2,186	4,351**	1,365***#		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	6,135	5,288	0,243***###		
К _т (ммоль/л)	6,349	6,410	0,866***###		
	Ca ²⁺ -ATФ-аза	ПМ; (n=3)			
Vinotuni nopovotnu	Вік тварин, міс				
Кінстичні парамстри	1	6	30		
V ₀ (мкмоль Ф _н /хв× мг⁻¹ протеїну)	0,620	0,541	0,128***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,174	0,955*	0,308***###		
τ (хв)	1,895	1,767	2,411		
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	1,865	1,418	0,419***###		
К _т (ммоль/л)	1,968	1,432	1,515		

Кінетичні параметри гідролізу АТФ у тканині селезінки

Рис. 3.49. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині селезінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Рис. 3.50. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині селезінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Максимальну активність ензимів у селезінці молодих і зрілих тварин визначали за 5 ммоль/л Ca^{2+} у середовищі інкубування, а старих — за 7 ммоль/л для Ca^{2+} -АТФ-ази ЕПС та Ca^{2+} -АТФ-ази ПМ (див. рис. 3.49 *г*, 3.50 *г*).

Нагромадження $\Phi_{\rm H}$ залежало від вмісту протеїну в зразках. Оптимальне його значення для Ca²⁺-ATФ-ази ЕПС становило 125 мкг протеїну/мл у селезінці молодих і зрілих щурів та 75 мкг протеїну/мл – у старих. Натомість оптимуми для Ca²⁺-ATФ-ази ПМ становили 125, 115 та 100 мкг протеїну/мл у тварин відповідного віку (див. рис. 3.49 *д*, 3.50 *д*).

Зниження на 75 та 81 % активності Ca²⁺-АТФ-ази ЕПС та Ca²⁺-АТФ-ази ПМ з віком щурів виявлено у печінці (рис. 3.51 *a*). Подібну закономірність спостерігали у нирках, де активність Ca²⁺-АТФ-аз зменшувалася на 85–87 % у старих тварин, порівняно зі зрілими та молодими (рис. 3.51 *в*).

Рис. 3.51. Активність Ca²⁺-ATФ-аз і вміст загального кальцію у печінці (*a*, *б*) та нирках (*в*, *г*) щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Рис. 3.52. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині печінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Рис. 3.53. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині печінки (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Крім того, у тканинах тварин цього віку спостерігали суттєве зростання рівня кальцію – відповідно, у 7 та 4 рази, порівняно зі шестимісячними (див. рис. 3.51 б, г).

Інтенсивність вивільнення $\Phi_{\rm H}$ досліджуваними ензимами також була незначною в обох тканинах старих тварин (див. рис. 3.52 *a*, 3.53 *a*, рис. 3.54 *a*, 3.55 *a*). Значення параметрів V₀ та P_{max} цієї реакції гідролізу АТФ Ca²⁺-АТФазою ЕПС клітин печінки знижувалися у 2 і 5 разів, а Ca²⁺-АТФ-азою ПМ – у 3 і 7 разів у старих тварин, порівняно зі зрілими (див. рис. 3.52 *б*, 3.53 *б*, табл. 3.7). Таблиця 3.7

Са ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,163	0,625*	0,384*###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	2,323	2,596	0,501***###		
τ (хв)	1,998	2,151**	4,305**#		
V_{max} (мкмоль $\Phi_{H}/x_{B} \times Mr^{-1}$ протеїну)	4,773	4,552	0,697***### 1,479**##		
К _т (ммоль/л)	3,873	3,909			
	Са ²⁺ -АТФ-аза	ПМ; (n=3)			
Vineruni nopomernu	Вік тварин, міс				
Кінстичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,087	0,903	0,309***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,097	2,339	0,349***###		
τ (хв)	2,849	2,590	1,131**##		
V_{max} (мкмоль $\Phi_{H}/x_{B} \times Mr^{-1}$ протеїну)	4,209	4,073	0,366***###		
К _т (ммоль/л)	2,238	3,081	0,541***###		

Кінетичні параметри гідролізу АТФ у тканині печінки

У нирках ці показники для відповідних ензимів знижувалися у 2 і 4 рази та 3 і 9 разів у тридцятимісячних тварин, порівняно зі шестимісячними (рис. 3.54 б, 3.55 б, табл. 3.8).

Рис. 3.54. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині нирок (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.55. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині нирок (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

За наявності 2,5–3,0 ммоль/л АТФ у середовищі активність обох ензимів досягала максимального значення у печінці та нирках молодих і зрілих тварин. Однак, для Ca²⁺-АТФ-ази ПМ обох тканин у старих щурів цей максимум відзначили за 2,0 ммоль/л субстрату (див. рис. 3.52 *в*, 3.53 *в*, 3.54 *в*, 3.55 *в*). V_{max} та K_m знижувалися з віком – для Ca²⁺-АТФ-ази ЕПС у 6,5 і 3 рази та 8 і 4 рази, відповідно, у печінці та нирках (див. рис. 3.52 *г*, 3.54 *г*, табл. 3.7, 3.8). V_{max} та K_m для Ca²⁺-АТФ-ази ПМ знижувалися у 11 та 6 разів та 11 і 3 рази, відповідно, у печінці та нирках старих тварин порівняно зі зрілими (див. рис. 3.53 *г*, 3.55 *г*, табл. 3.7, 3.8).

Таблиця 3.8

Ca ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
	1	6	30		
V ₀ (мкмоль Ф _н /хв× мг⁻¹ протеїну)	1,363	0,881*	0,420**###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,266	3,207	0,866***###		
τ (хв)	2,396	2,440	3,061		
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	8,569	8,244	1,031***### 1,599***###		
К _т (ммоль/л)	6,009	6,117			
	Са ²⁺ -АТФ-аза]	ΠM; (n=3)			
Kinethini Hopometru	Вік тварин, міс				
Кистичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,337	1,010	0,334*###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,628	3,853	0,410***###		
τ (хв)	2,713	2,815	3,229##		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	4,189	5,814	0,507***###		
К _т (ммоль/л)	1,436	2,847**	0,904***#		

Кінетичні параметри гідролізу АТФ у тканині нирок

На активність ензимів також впливала концентрація іонів кальцію. Оптимальне значення становило 5 ммоль/л для Ca^{2+} -АТФ-аз обох тканин щурів у віці один та шість місяців, проте у печінці та нирках тварин у віці тридцять місяців дещо відрізнялося – для Ca^{2+} -АТФ-ази ЕПС – 6 ммоль/л, тоді як для

Са²⁺-АТФ-ази ПМ – 7 ммоль/л (див. рис. 3.52 г, 3.53 г, 3.54 г, 3.55 г).

Щодо протеїну, то його оптимум концентрації становив 125 мкг/мл для ензимів обох тканин молодих і зрілих тварин, натомість у старих тварин – переважно 100 мкг/мл (див. рис. 3.52 *д*, 3.53 *д*, 3.54 *д*, 3.55 *д*).

Під час дослідження активності $Ca^{2+}-AT\Phi$ -аз у стегновому м'язі встановлено її зменшення з віком щурів (рис. 3.56 *a*). Крім того, виявлено нагромадження Ca^{2+} у цій тканині (3.56 *б*).

Рис. 3.56. Активність Ca²⁺-ATФ-аз (*a*) і вміст загального кальцію (б) у стегновому м'язі щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Вивільнення $\Phi_{\rm H}$ тривало упродовж 10 хв, проте його кількість, як і кінетичні параметри, відрізнялася у тварин різного віку (рис. 3.57 *a*, 3.58 *a*). Зокрема, V₀ та P_{max} для обох ензимів зменшилися майже утричі у старих щурів порівняно зі зрілими. Проте, час реакції, навпаки, зростав за цих умов (рис. 3.57 *б*, 3.58 *б*, табл. 3.9).

Насичення субстратом Ca²⁺-АТФ-аз відзначили за 2,5 ммоль/л у тварин різного віку (рис. 3.57 *в*, 3.58 *в*).

Показники V_{max} та K_m для Ca^{2+} -АТФ-ази ЕПС зменшувалися у 5 і 4 рази, проте K_m для Ca^{2+} -АТФ-ази ПМ збільшилася удвічі у старих тварин, порівняно зі зрілими (рис. 3.57 *г*, 3.58 *г*, табл. 3.9).

Таблиця 3.9

Са ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
Temerni ini napamerph	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,339	0,738*	0,273*###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,867	1,457**	0,559**###		
τ (хв)	1,889	2,045			
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	7,593	2,843**	0,592***###		
К _т (ммоль/л)	4,085	3,221	0,877***###		
	Ca ²⁺ -ATФ-аза	ПМ; (n=3)			
Vinorumi nonovornu		Вік тварин, міс			
Кінстичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,664	1,354	0,361***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	4,777	2,630*	1,099**###		
τ (хв)	2,870	1,943*	3,045*		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	6,588	3,754*	2,398*##		
К _т (ммоль/л)	1,995	1,625	3,772**#		

Кінетичні параметри гідролізу АТФ у тканині стегнового м'язу

Оптимальне значення концентрації Ca²⁺ – 5 ммоль/л для обох ензимів молодих тварин, 6 ммоль/л – для зрілих і 7 ммоль/л – для старих (рис. 3.57 *г*, 3.58 *г*).

За 125 мкг протеїну/мл виділення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС та Ca²⁺-АТФазою ПМ було максимальним в одно- і шестимісячних щурів, а у тридцятимісячних, відповідно, – за 100 та 115 мкг протеїну/мл (див. рис. 3.57 *д*, 3.58 *д*).

Подібну вікову закономірність зміни активності досліджуваних Ca²⁺-АТФ-аз та вмісту кальцію спостерігали у довгастому мозку та мозочку (рис. 3.59).

Рис. 3.57. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині стегнового м'язу (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.58. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині стегнового м'язу (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*г*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.59. Активність Ca²⁺-ATФ-аз і вміст загального кальцію у довгастому мозку (*a*, *б*) та мозочку (*в*, *г*) щурів різного віку: 1 – один; 2 – шість; 3 – тридцять місяців

Виділення $\Phi_{\rm H}$ обома досліджуваними ензимами у довгастому мозку та мозочку мало подібну до інших тканин закономірність, тобто знижувалося у тридцятимісячних тварин — відповідно, на 69–57 та 72–89 %, порівняно зі шестимісячними (рис. 3.60 *a*, 3.61 *a*, 3.62 *a*, 3.63 *a*).

 V_0 та P_{max} для Ca^{2+} -АТФ-аз також суттєво зменшувалися в тканинах старих щурів (рис. 3.60 б, 3.61 б; 3.62 б, 3.63 б; табл. 3.10, 3.11).

Найбільшу активність Ca²⁺-ATФ-ази ЕПС та Ca²⁺-ATФ-ази ПМ визначали за 2,5–3,0 ммоль/л АТФ у тканинах молодих і зрілих тварин (рис. 3.60 *в*, 3.61 *в*; 3.62 *в*, 3.63 *в*).

Рис. 3.60. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-AT Φ -азою ЕПС у процесі гідролізу AT Φ у тканині довгастого мозку (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТ Φ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність AT Φ -ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Рис. 3.61. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині довгастого мозку (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Рис. 3.62. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ЕПС у процесі гідролізу АТФ у тканині мозочка (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*r*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*д*)

Рис. 3.63. Динаміка вивільнення $\Phi_{\rm H}$ Ca²⁺-АТФ-азою ПМ у процесі гідролізу АТФ у тканині мозочка (*a*) та лінеаризація кривих акумуляції $\Phi_{\rm H}$ у {P/t; P} координатах (*б*); вплив АТФ на активність ензиму (*в*) та лінеаризація кривих у координатах Лайнуївера–Берка (*г*); вплив іонів Ca²⁺ на активність АТФ-ази (*t*); залежність вивільнення $\Phi_{\rm H}$ від концентрації протеїну (*d*)

Дані лінеаризували (див. рис. 3.60 *г*, 3.61 *г*; 3.62 *г*, 3.63 *г*) та визначили V_{max} та K_m , які наведені у табл. 3.10, 3.11. Очевидно, що вони зменшувалися для ензимів у довгастому мозку у 4 і 2 рази та 9 разів – у мозочку старих тварин, порівняно зі зрілими.

Таблиця 3.10

Ca ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри		Вік тварин, міс			
	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,140	0,692*	0,206***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,111	3,362	0,932***###		
τ (хв)	2,729	4,857*	4,527#		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	6,116	3,723*	0,913***###		
К _т (ммоль/л)	4,329	2,095**	1,181*###		
	Са ²⁺ -АТФ-аза]	ΠM; (n=3)			
Vinotuni Hopovotnu	Вік тварин, міс				
Кінстичні парамстри	1	6	30		
V ₀ (мкмоль Ф _н /хв× мг⁻¹ протеїну)	1,436	0,755*	0,152***###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	1,556	2,891*	0,663***## 4,774*###		
τ (хв)	1,084	2,831**			
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	2,087	5,277**	0,573***###		
К _т (ммоль/л)	1,232	3,965***	0,430***###		

Кінетичні параметри гідролізу АТФ у тканині довгастого мозку

Оптимум концентрації Ca²⁺ для Ca²⁺-АТФ-ази ЕПС у довгастому мозку та мозочку становив 5, 5 та 6 ммоль/л, а для Ca²⁺-АТФ-ази ПМ – 5, 5 та 7 ммоль/л, відповідно, в одно-, шести- і тридцятимісячних тварин (див. рис. 3.60 *г*, 3.61 *г*, 3.62 *г*, 3.63 *г*).

Оптимальний вмісту протеїну для Ca²⁺-АТФ-аз обох тканин – 125 мкг/мл у молодих і зрілих тварин та 75–100 мкг/мл – у старих (див. рис. 3.60 *д*, 3.61 *д*; 3.62 *д*, 3.63 *д*).

Підвищення концентрації іонів кальцію у внутрішньоклітинному середовищі відбувається під час різних патологічних станів та може вказувати,

наприклад, на нейродегенеративні процеси, або вікові зміни нейронів.

У багатьох експериментальних спостереженнях показано, що підвищена концентрація іонів кальцію в цитоплазмі робить нейрони уразливішими до гіпоксії та інших несприятливих впливів, сприяє передчасній загибелі нервових клітин, зменшує пластичність нейронів [68, 70].

Таблиця 3.11

Са ²⁺ -АТФ-аза ЕПС; (n=3)					
Кінетичні параметри	Вік тварин, міс				
	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,209	0,709*	0,325**###		
Р _{тах} (мкмоль Ф _н ∕ мг протеїну)	3,183	3,461	0,810***###		
τ (хв)	2,632	2,883	3,492		
V_{max} (мкмоль $\Phi_{H}/xB \times M\Gamma^{-1}$ протеїну)	9,083	14,124*	1,130***### 2,235***###		
К _т (ммоль/л)	6,837	12,476*			
	Са ²⁺ -АТФ-аза]	ПМ; (n=3)			
Vinotuni nopovotnu	Вік тварин, міс				
Кинстичні парамстри	1	6	30		
V_0 (мкмоль $\Phi_{ m H}$ /хв× мг ⁻¹ протеїну)	1,088	0,861	0,159***###		
Р _{тах} (мкмоль Ф _н / мг протеїну)	2,590	2,453	0,215***###		
τ (хв)	2,381	2,848	3,352#		
V_{max} (мкмоль $\Phi_{H}/xB \times Mr^{-1}$ протеїну)	4,564	4,032	0,256***###		
К _т (ммоль/л)	3,083	2,804	0,652***###		

Кінетичні параметри гідролізу АТФ у тканині мозочка

Отже, у пріон-реплікувальних органах тридцятимісячних тварин активність Ca²⁺-ATФ-аз зменшується на 5–89 %, порівняно зі зрілими. Крім того, у старих тварин відбувається нагромадження значної кількості кальцію (на 44–78 % більше, порівняно зі зрілими).

На основі результатів кінетичного аналізу ми дійшли висновку, що з віком транспортування іонів кальцію відбувається повільніше і менш інтенсивно. У тканинах старих тварин суттєво зростає спорідненість ензимів до субстрату, що підтверджує зниження значення K_m. Іонні транспортери зберігають активність за високих концентрацій іонів кальцію у середовищі. Очевидно зміна гомеостазу кальцію обумовлена порушенням функції Ca²⁺-ATФ-аз, зниженням їх активності.

Результати, представлені у цьому підрозділі, опубліковані у працях: Статті:

- Кушкевич М.В. Локалізація фізіологічного пріона й активність Na⁺–K⁺-АТФази у тканинах пріон-реплікувальної системи щурів / М.В. Кушкевич, В.В. Влізло, Ю.В. Мартин // Біологічні Студії. – 2011. – Том 5, №3. – С. 67–76.
- Кушкевич М.В. Локалізація клітинного пріона і активність Na⁺-K⁺- та Ca²⁺-АТФ-аз у селезінці щурів різного віку / М.В. Кушкевич, В.В. Влізло // Біологія тварин. – 2013. – Т. 15, № 2. – С. 81–89.
- Кушкевич М.В. Імуногістохімічне виявлення фізіологічного пріона і активність №⁺-К⁺ АТФ-ази у різних тканинах щурів / М.В. Кушкевич // Вісник ОНУ. Біологія. – 2012. – Т. 17, в. 1–2, (26–27). – С. 13–23.
- Кушкевич М.В. Фізіологічний пріон і активність Na⁺,K⁺- та Ca²⁺-ATPаз плазматичної мембрани клітин довгастого мозку щурів різного віку / М.В. Кушкевич, В.В. Влізло, Ю.В. Мартин // Укр. біохім. журн. – 2013. – Т. 85, № 2. – С. 52–58.
- Kushkevych M. Relationship between the cellular prion level and ATPases activities in the liver and kidneys of different age *Wistar line* rats / M. Kushkevych, N. Kuzmina, V. Vlizlo // The Animal Biology. 2016. vol. 18, No1. P. 69–76.

Тези:

- Kushkevych M. V. Cellular prion and Ca²⁺-ATP-ases activity in kidney of different age rats / M. V. Kushkevych, V. V. Vlizlo // Abstracts of reports of the Conference for Young Scientists Institute of Molecular Biology and Genetics, September 21–25th: Kyiv, 2015. – P. 32.
- 7. Kushkevych M. V. Localization and level of cellular prion and activity of Ca²⁺-ATP-ases in the rats' liver depending on age / M. V. Kushkevych, V. V. Vlizlo // Abstracts of reports of the International Conference, October 2–3th: Lvin, 2015. The Animal Biology. vol. 17, № 3. P. 178.

- Kushkevych M. V. The level of cellular prion isoforms and ATPases activities in the medula oblongata of different age *Wistar line* rats / M. V. Kushkevych // Abstracts of reports of the Conference for Young Scientists Palladin Institute of Biochemistry, May 26–27th: Kyiv, 2016. – P. 24.
- Kushkevych M. V. Cellular prion level and ATP-ases activities in the jejunum of different age Wistar line rats / M. V. Kushkevych, V. V. Vlizlo // Abstracts of reports of the International Conference, September 29-30th: Lviv, 2016. – The Animal Biology. – vol. 18, № 3. – P. 159.

3.4. Визначення залежності між віковими змінами вмісту PrP^C, активності АТФ-аз, вмісту Na⁺, K⁺ і загального кальцію

3.4.1. Кореляційний аналіз між вмістом PrP^C, активністю АТФ-аз, вмістом Na⁺, K⁺ і загального кальцію. Проведено кореляційний аналіз між вмістом PrP^C активністю Na⁺-K⁺-АТФ-ази, Ca²⁺-АТФ-аз та вмістом іонів натрію, калію та кальцію у тканинах тварин різного віку. Так, у порожній кишці кореляція встановлена між (позитивна) сильна пряма результатами імуногістохімічного, дот блот і вестерн блот аналізу для вмісту PrP^C (r=0,997-0,999), а також вмістом PrP^{C} та активністю Ca^{2+} -АТФ-ази ПМ (r=0,729–0,780), тоді як між вмістом PrP^C та активністю двох інших ензимів кореляція слабка (r=0,250; рис. 3.64–3.66). Натомість пряму сильну залежність відзначили між трьома ензимами. Між активністю Na⁺-K⁺-АТФ-ази та вмістом Na⁺ була негативна сильна кореляція (r=-0,984), тоді як К⁺ – пряма середня (r=0,661). Крім того, між активністю обох Ca²⁺-АТФ-аз та вмістом кальцію спостерігали обернену сильну кореляцію (r=-0,797, -0,999) (табл. 3.12).

У селезінці між вмістом PrP^{C} , визначеного різними методами, встановлено пряму сильну залежність (r=0,935–0,992). Проте, між вмістом PrP^{C} за даними імуногістохімії та активністю трьох ензимів кореляція була пряма середня (r=0,579–0,633), між PrP^{C} за даними дот і вестерн блот аналізу та активністю – пряма помірна (r=0,318–0,437; рис. 3.64–3.66), однак між активністю ензимів АТФ-аз між собою – пряма сильна (r=0,998–0,999). Крім того, визначили зв'язок між активністю ензимів та вмістом іонів у цій тканині. Таблиця 3.12

Коефіцієнт Пірсона для показників, визначених у порожній кишці та селезінці

	Порожня кишка								
Вміст РгР ^С Акти		ктивність			Вміст				
Параметри		Дот блот	Вестерн блот	Na ⁺ - K ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ -ази ПМ	Na ⁺	$\mathrm{K}^{\scriptscriptstyle +}$	каль- цію
$P_{r}P^{\cup}$	Імуногі- стохімія	0,998	0,997	0,250	0,250	0,780	-0,072	-0,561	-0,245
BMICT	Дот блот		0,999	0,202	0,202	0,749	-0,023	-0,601	-0,197
	Вестерн блот			0,173	0,173	0,729	0,006	-0,625	-0,168
lictb	Na ⁺ -K ⁺ - АТФ- ази				1	0,801	-0,984	0,661	-0,999
Активн	Са ²⁺ - АТФ- ази ЕПС					0,800	-0,984	0,661	-0,999
	Са ²⁺ - АТФ- ази ПМ						-0,680	0,079	-0,797
BMICT	Na^+							-0,785	0,985
	K^+								-0,665

	Селезінка										
		Вмі	ст PrP ^C		Активність			Вміст			
Параметри		Дот блот	Вестерн блот	Na ⁺ К ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	K ⁺	каль- цію		
BMICT PrP	Імуногіс тохімія	0,935	0,973	0,633	0,634	0,579	-0,111	0,501	-0,518		
	Дот блот		0,992	0,318	0,320	0,253	0,247	0,163	-0,182		
	Вестерн блот			0,435	0,437	0,373	0,123	0,286	-0,304		
ľb	Na ⁺ -К ⁺ - АТФ- ази				0,999	0,998	-0,840	0,987	-0,990		
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,998	-0,839	0,987	-0,990		
A	Са ²⁺ - АТФ- ази ПМ						-0,875	0,996	-0,997		
lcT	Na^+							-0,916	0,908		
BMI	K^+								-0,999		

Зокрема, між активністю Na⁺–K⁺- та Ca²⁺-ATФ-аз і вмістом Na⁺ та кальцію встановили обернену сильну кореляцію (r=-0,839– (-0,997)), тоді як для K⁺ – пряму сильну (r=0,987–0,996). Така ж сильна кореляція була між вмістом іонів, проте між вмістом Na⁺ і кальцію вона була пряма (r=0,908), а між Na⁺ і K⁺ та кальцію і K⁺ – обернена (r=-0,916, -0,999) (див. табл. 3.12).

Провівши кореляційний аналіз між визначеними у попередніх дослідах показниками у тканині печінки, було встановлено між вмістом PrP^C за даними дот блоту та імуногістохімії, а також дот блоту і вестерн блоту пряму сильну Таблиця 3.13

		Вміст PrP ^C Активність			ТЬ	Вміст			
П	араметри	Дот блот	Вестерн блот	Na ⁺ - K ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	$\mathrm{K}^{\scriptscriptstyle +}$	каль- цію
2	Імуногіс тохімія	0,714	0,485	0,850	0,832	0,933	-0,964	0,857	-0,904
MICT Pr	Дот блот		0,959	0,976	0,982	0,918	-0,504	0,973	-0,945
B	Вестерн блот			0,873	0,889	0,766	-0,236	0,866	-0,812
	Na ⁺ -K ⁺ - АТФ- ази				0,999	0,982	-0,681	0,999	-0,993
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,976	-0,656	0,999	-0,989
ł	Са ²⁺ - АТФ- ази ПМ						-0,805	0,983	-0,997
icr	Na^+							-0,690	0,759
BM	K^+								-0,995

Коефіцієнт Пірсона для показників, визначених у печінці

залежність (r=0,714, 0,959), тоді як між даними імуногістохімії та вестерн блоту – пряму помірну (r=0,485). Між вмістом PrP^C та активністю трьох АТФ-аз кореляція була прямою сильною (r=0,766–0,982), як і між активністю цих ензимів між собою (r=0,976–0,999; рис. 3.64–3.66). Такий зв'язок установлено між активністю ензимів та вмістом іонів, проте для Na^+ і кальцію він був оберненим (r=-0,805–(-0,997)), а K⁺ – прямим (r=0,989–0,997) (див. табл. 3.13).

У нирках результати кореляційного аналізу відрізнялися (табл. 3.14). Сильну пряму залежність встановлено лише між даними імуногістохімії та дот блоту (r=0,937).

Таблиця 3.14

		Вміст PrP ^C			Активніс	ГЬ	Вміст		
П	араметри	Дот блот	Вестерн блот	Na ⁺ - К ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	$\mathrm{K}^{\scriptscriptstyle +}$	каль- цію
BMICT PrP	Імуногіс тохімія	0,937	-0,304	0,277	0,484	0,397	-0,910	0,934	-0,519
	Дот блот		0,048	0,595	0,760	0,693	-0,998	0,750	-0,785
	Вестерн блот			0,831	0,686	0,754	-0,118	-0,624	-0,657
	Na ⁺ -К ⁺ - АТФ- ази				0,975	0,992	-0,650	-0,085	-0,965
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,995	-0,803	0,139	-0,999
,	Са ²⁺ - АТФ- ази ПМ						-0,741	0,042	-0,991
AIC	Na^+							-0,702	0,827
BMI	K^+								-0,179

Коефіцієнт Пірсона для показників, визначених у нирках

Проте між вмістом PrP^{C} та активністю АТФ-аз встановлено кореляцію різної сили зв'язку (рис. 3.64–3.66). Натомість між активностями ензимів залежність була сильною та позитивною (r=0,975–0,995). Сильну обернену кореляцію показано між активністю ензимів та вмістом Na⁺ та кальцію (r=-0,741–(-0,999)), проте для K⁺ вона не встановлена (див. табл. 3.14).

У стегновому м'язі між вмістом PrP^C за різними даними кореляція була різною (табл. 3.15). Проте між активністю АТФ-аз і вмістом PrP^C за даними

Таблиця 3.15

		Вміст PrP ^C			Активніс	ТЬ	Вміст		
П	араметри	Дот блот	Вестерн блот	Na ⁺ - К ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	$\mathrm{K}^{\scriptscriptstyle +}$	Каль- цію
20	Імуногіс тохімія	0,640	0,238	0,999	0,994	0,997	-0,991	0,662	-0,986
MICT Pr]	Дот блот		0,898	0,673	0,552	0,694	-0,529	-0,151	-0,758
B	Вестерн блот			0,279	0,130	0,307	-0,102	-0,570	-0,395
	Na ⁺ -K ⁺ - АТФ- ази				0,988	0,999	-0,984	0,629	-0,993
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,984	-0,999	0,740	-0,962
Ā	Са ²⁺ - АТФ- ази ПМ						-0,978	0,606	-0,995
AICT	Na^+							-0,759	0,954
B	K^+								-0,530

Коефіцієнт Пірсона для показників, визначених у стегновому м'язі

імуногістохімії встановлена пряма сильна кореляція (r=0,994–0,999), вмістом PrP^{C} за даними дот блоту – середня (r=0,552–0,694), а вмістом PrP^{C} за даними вестерн блоту – слабка (r=0,279–0,307; рис. 3.64–3.66). Залежність між активністю ензимів між собою, а також між активністю та вмістом Na⁺ і кальцію була сильною, проте оберненою – у випадку іонів (див. табл. 3.15).

Визначали кореляцію між показниками у довгастому мозку та мозочку.

Таблиця 3.16

				Довга	астий мо	ЭЗОК			
	Вміст PrP ^C Активність					ТЬ	Вміст		
Параметри		Дот блот	Вестерн блот	Na ⁺ - K ⁺ - АТФ- ази	Са ²⁺ - АТФ -ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	K^+	каль- цію
BMICT PrP	Імуногіс -тохімія	0,842	0,973	0,426	0,647	0,947	0,144	-0,264	-0,610
	Дот блот		0,944	-0,129	0,134	0,624	0,655	-0,743	-0,087
	Вестерн блот			0,205	0,453	0,847	0,370	-0,481	-0,410
P	Na ⁺ -K ⁺ - АТФ- ази				0,965	0,694	-0,834	0,760	-0,977
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,858	-0,661	0,565	-0,999
A	Са ²⁺ - АТФ- ази ПМ						-0,181	0,060	-0,832
BMICT	Na^+							-0,993	0,696
	K^+								-0,603

Коефіцієнт Пірсона для показників, визначених у довгастому мозку та мозочку

	Мозочок									
		Вмі	ст PrP ^C		Активніс	ТЬ	Вміст			
Параметри		Дот блот	Вестерн блот	Na ⁺ - K ⁺ - АТФ -ази	Са ²⁺ - АТФ- ази ЕПС	Са ²⁺ - АТФ- ази ПМ	Na ⁺	$\mathrm{K}^{\scriptscriptstyle +}$	каль- цію	
BMICT PrP	Імуногіс -тохімія	0,949	0,957	0,627	0,672	0,659	0,062	0,755	-0,636	
	Дот блот		0,818	0,351	0,405	0,389	0,372	0,511	-0,362	
	Вестерн блот			0,825	0,857	0,848	-0,229	0,912	-0,832	
Ъ	Na ⁺ -K ⁺ - АТФ- ази				0,998	0,999	-0,739	0,984	-0,999	
Активніст	Са ²⁺ - АТФ- ази ЕПС					0,999	-0,698	0,993	-0,998	
A	Са ²⁺ - АТФ- ази ПМ						-0,710	0,991	-0,999	
licT	Na^+							-0,607	0,731	
BMI	K^+								-0,986	

В обох тканинах між вмістом PrP^{C} була пряма сильна залежність (r=0,818–0,973). Проте між вмістом PrP^{C} та активністю ензимів АТФ-аз встановлена кореляція різної сили зв'язку. Зокрема, у довгастому мозку між вмістом PrP^{C} за даними імуногістохімії та активністю $Na^+-K^+-AT\Phi$ -ази залежність була помірною (r=0,426), $Ca^{2+}-AT\Phi$ -ази ЕПС – середньою (r=0,647), а $Ca^{2+}-AT\Phi$ -ази ПМ – сильною (r=0,947; див. табл. 3.16; рис. 3.64–3.66).

У мозочку кореляція була середньою (r=0,627–0,672), помірною (r=0,351– 0,405) та сильною (r=0,825–0,857) між активністю ензимів та вмістом PrP^{C} за даними імуногістохімії, дот блот і вестерн блот аналізу, відповідно (рис. 3.64– 3.66). Сильний зв'язок спостерігали між активністю ензимів між собою в обох тканинах. Між активністю Na⁺–K⁺-ATΦ-ази та вмістом іонів Na⁺ і K⁺ кореляція також була сильною у довгастому мозку (r=-0,834, 0,760) та мозочку (r=-0,739, 0,984), як і між активністю Ca²⁺-ATΦ-аз та вмістом кальцію (r=-0,832–(-0,999)). Однак для Na⁺ та кальцію залежність була оберненою (див. табл. 3.16).

Тобто, пряма сильна залежність вказує на рівномірні кількісні зміни цих показників (зниження або зростання) у кожній тканині з віком тварин, натомість обернена – про зростання одного та зменшення іншого показника. Чим менша рівновіддаленість точок значень певних параметрів від прямої лінійної функції, тим сильніша кореляція. Отже, вміст PrP^C за різними даними зменшується у старих тварин, як і активність АТФ-аз та вміст К⁺. Натомість вміст Na⁺ та кальцію збільшується. Такі коливання значень є пов'язаними, що підтверджується наявністю кореляції різної сили зв'язку.

Крім того, проведено кореляційний аналіз для вмісту PrP^{C} , активності ензимів та вмісту іонів і кальцію між різними тканинами. Для вмісту PrP^{C} за даними імуногістохімічного аналізу отримали різну залежність. Сильну кореляцію встановлено між показниками порожньої кишки та селезінки (r=0,849), нирок (r=-0,786), довгастого мозку (r=0,868) і мозочку (r=0,861); селезінки та довгастого мозку (r=0,999) і мозочку (r=0,999); печінки та нирок (r=0,864) і стегнового м'язу (r=0,999), а також нирок та стегнового м'язу (r=0,865); довгастого мозку та мозочку (r=0,999). Між параметрами інших тканин установлено обернену помірну залежність (табл. 3.17).

Для вмісту PrP^{C} за результатами дот блоту сильну залежність отримали між показниками порожньої кишки та селезінки (r=0,971), довгастого мозку (r=0,999) і мозочку (r=0,966); селезінки та довгастого мозку (r=0,971) і мозочку (r=0,999); печінки та стегнового м'язу (r=0,995); довгастого мозку та мозочку (r=0,965).

Рис. 3.64. Кореляційні зв'язки між вмістом PrP^C, визначеного під час імуногістохімічного (*a*), дот блот (*б*) та вестерн блот (*в*) аналізів, та активністю Na⁺–K⁺-ATФ-ази

Рис. 3.65. Кореляційні зв'язки між вмістом PrP^{C} , визначеного під час імуногістохімічного (*a*), дот блот (*б*) та вестерн блот (*в*) аналізів, та активністю Ca^{2+} -АТФ-ази ЕПС

Рис. 3.66. Кореляційні зв'язки між вмістом PrP^C, визначеного під час імуногістохімічного (*a*), дот блот (*б*) та вестерн блот (*в*) аналізів, та активністю Ca²⁺-ATФ-ази ПМ

Середня обернена кореляція встановлена між показниками порожньої кишки та нирок (r=-0,561); позитивна – селезінки та печінки (r=0,557) і м'язу (r=0,636). Така ж кореляція встановлена між параметрами печінки та нирок (r=0,585) і мозочка (r=0,576), а також нирок та стегнового м'язу (r=0,503) і довгастого мозку (r=-0,562); стегнового м'язу та мозочку (r=0,653). Для інших тканин кореляція була слабшою (табл. 3.17).

Таблиця 3.17

Вміст PrP ^C (за результатами імуногістохімічного аналізу)									
Тканина	Селезінка	Печінка	Нирки	Стегновий м'яз	Довгастий мозок	Мозочок			
Порожня кишка	0,849	-0,367	-0,786	-0,369	0,868	0,861			
Селезінка		0,181	-0,339	0,178	0,999	0,999			
Печінка			0,864	0,999	0,144	0,157			
Нирки				0,865	-0,374	-0,362			
Стегновий м'яз					0,141	0,154			
Довгастий мозок						0,999			
Вміст PrP ^C (за результатами дот блот аналізу)									
Порожня кишка	0,971	0,344	-0,561	0,434	0,999	0,966			
Селезінка		0,557	-0,348	0,636	0,971	0,999			
Печінка			0,585	0,995	0,343	0,576			
Нирки				0,503	-0,562	-0,327			
Стегновий м'яз					0,433	0,653			
Довгастий мозок						0,965			
	Вміст Рг	Р ^С (за резу	льтатами	вестерн блот	ганалізу)				
Порожня кишка	0,921	0,573	0,782	0,767	0,935	0,618			
Селезінка		0,848	0,963	0,957	0,999	0,876			
Печінка			0,959	0,965	0,827	0,998			
Нирки				0,999	0,952	0,973			
Стегновий м'яз					0,945	0,979			
Довгастий мозок						0,857			

Коефіцієнт кореляції Пірсона для біохімічних параметрів тканин

Для вмісту PrP^{C} за результатами вестерн блот аналізу пряму сильну залежність показано між даними усіх досліджуваних тканин, за винятком порожньої кишки та печінки (r=0,573) і мозочка (r=0,618), де залежність була середньою (див. табл. 3.17).

Між значеннями активності Na⁺–K⁺-АТФ-ази різних тканин установлено пряму сильну залежність (r=0,751–0,999; табл. 3.18). Така ж залежність між показниками усіх досліджуваних тканин для активності Ca²⁺-ATФ-ази ЕПС (r=0,738–0,999) і деяких тканин для Ca²⁺-ATΦ-ази ПМ (r=0,743–0,998). Проте, між даними порожньої кишки та селезінки (r=0,671) і печінки (r=0,619), а також стегнового м'язу та довгастого мозку (r=0,515) встановлена середня кореляція, а між параметрами порожньої кишки та стегнового м'язу – помірна (r=0,361) (табл. 3.18).

Таблиця 3.18

Активність Na ⁺ –K ⁺ -АТФ-ази								
Тканина	Селезінка	Печінка	Нирки	Стегновий м'яз	Довгастий мозок	Мозочок		
Порожня кишка	0,992	0,997	0,991	0,832	0,945	0,994		
Селезінка		0,999	0,967	0,895	0,979	0,999		
Печінка			0,979	0,871	0,967	0,999		
Нирки				0,751	0,893	0,971		
Стегновий м'яз					0,967	0,887		
Довгастий мозок						0,975		
		Активніст	ть Ca ²⁺ -А7	ГФ-ази ЕПС				
Порожня кишка	0,992	0,999	0,996	0,738	0,998	0,999		
Селезінка		0,997	0,999	0,816	0,998	0,997		
Печінка			0,999	0,765	0,999	0,999		
Нирки				0,796	0,999	0,999		
Стегновий м'яз					0,783	0,770		
Довгастий мозок						0,999		

Коефіцієнт кореляції Пірсона для біохімічних параметрів тканин

Продовження табл. 3.18.

Активність Ca ²⁺ -АТФ-ази ПМ										
Тканина	Селезінка	Печінка	Нирки	Стегновий м'яз	Довгастий мозок	Мозочок				
Порожня кишка	0,671	0,619	0,804	0,361	0,985	0,759				
Селезінка		0,998	0,980	0,934	0,787	0,992				
Печінка			0,964	0,956	0,743	0,981				
Нирки				0,845	0,894	0,997				
Стегновий м'яз					0,515	0,881				
Довгастий мозок						0,859				
	BMICT Na ⁺									
Порожня кишка	0,867	0,755	0,853	0,832	0,741	0,786				
Селезінка		0,981	0,999	0,998	0,976	0,989				
Печінка			0,986	0,992	0,999	0,999				
Нирки				0,999	0,982	0,993				
Стегновий м'яз					0,989	0,997				
Довгастий						0,998				
MUSUK			Buier K	<u> </u> ·+						
	1		DMICI K	-						
Порожня кишка	0,845	0,723	0,782	0,809	0,982	0,606				
Селезінка		0,980	0,328	0,369	0,729	0,937				
Печінка			0,135	0,179	0,579	0,988				
Нирки				0,999	0,886	-0,022				
Стегновий м'яз					0,905	0,022				
Довгастий мозок						0,444				
	1	E	Зміст каль	цію	I					
Порожня кишка	0,966	0,984	0,992	0,896	0,994	0,996				
Селезінка		0,997	0,990	0,980	0,989	0,986				
Печінка		,	0,998	0,962	0,997	0,996				
Нирки			,	0,945	0,999	0,999				
Стегновий					0,940	0,933				
Повгастий										
МОЗОК						0,999				

Для вмісту Na⁺ і загального кальцію між даними усіх досліджуваних тканин установлена пряма сильна залежність, однак для К⁺ між даними деяких тканин залежність була середньою та помірною (див. табл. 3.18).

Варто відзначити, що між вмістом PrP^{C} та активністю $Na^{+}-K^{+}-AT\Phi$ -ази найсильніші кореляції отримано у печінці, стегновому м'язі та мозочку, між вмістом PrP^{C} та активністю $Ca^{2+}-AT\Phi$ -ази $E\Pi C -$ у печінці, нирках, мозочку, між вмістом PrP^{C} та активністю $Ca^{2+}-AT\Phi$ -ази $\Pi M -$ у порожній кишці, печінці, довгастому мозку. Сильну залежність частіше спостерігали між вмістом пріона, визначеного за допомогою вестерн блот аналізу, та активністю ензимів, порівняно з результатами імуногістохімічного та дот блот аналізів. У порожній кишці та довгастому мозку між вмістом PrP^{C} та активністю $Ca^{2+}-AT\Phi$ -ази ΠM відзначили сильну кореляцію, тоді як вмістом PrP^{C} та активністю $Na^{+}-K^{+}-AT\Phi$ -ази - переважно слабку.

Отже, між вмістом PrP^{C} , активністю ензимів та вмістом іонів і кальцію у досліджуваних тканинах існує кореляційний зв'язок різної сили. У результаті міжтканинного аналізу досліджуваних параметрів встановлено переважно сильну залежність. Імовірно, залежність між активністю ензимів та вмістом PrP^{C} зумовлена тим, що ці протеїни виконують подібні функції та мають подібну локалізацію в організмі. Наявність переважно сильної кореляції між досліджуваними параметрами тканин вказує на подібну їх онтогенетичну динаміку в організмі вцілому.

3.4.2. Двофакторний дисперсійний аналіз онтогенетичних змін вмісту клітинного пріона, активності АТФ-аз, вмісту іонів натрію, калію і кальцію. За результатами дисперсійного аналізу підтверджено вірогідну залежність змін вмісту PrP^{C} , активності іонних транспортерів, вмісту іонів і кальцію від віку та локалізації. Як показано на рис. 3.67., частка впливу фактора віку на вміст клітинного пріона за результатами імуногістохімічного, дот блот і вестерн блот аналізів становила 18, 22 і 15 %, тоді як частка впливу фактора тканинної локалізації – 65, 53 і 74 %, відповідно. Натомість фактор віку суттєво впливав на активність Na^+-K^+ - та $Ca^{2+}-AT\Phi$ -аз, показник якого був у межах від 54 до 84 %. Фактор тканинної локалізації не мав вірогідного впливу на досліджувані показники (9–25 %). Суттєвий вплив мав вік на вміст іонів натрію (60 %) та кальцію (85 %), а на вміст калію – значно менший, проте, вірогідний (19 %). Вміст Na⁺ і K⁺ залежав від локалізації (частки впливу становили 32 і 59 %, відповідно), проте вплив цього фактора на вміст кальцію не доведено.

Частки впливу неврахованих факторів були незначними та коливались в межах від 7 до 25 %. Дані фактори описували зміни досліджуваних параметрів на 75–93 %.

Рис. 3.67. Дисперсійний аналіз впливу факторів віку і тканинної локалізації на вміст PrP^C за результатами: 1 – імуногістохімічного; 2 – дот блот; 3 – вестерн блот аналізів; активність: 4 – Na⁺–K⁺-АТФ-ази; 5 – Ca²⁺-АТФ-ази ЕПС; 6 – Ca²⁺-АТФ-ази ПМ; вміст: 7 – Na⁺; 8 – K⁺; 9 – кальцію

Отже, отримані результати вказують на вірогідну залежність вмісту клітинного пріона від тканинної локалізації, тоді як вплив віку є вірогідно меншим. Активність ензимів та вміст іонів і кальцію залежать від віку, а фактор локалізації виявляє різний вплив на їх зміну. **3.4.3.** Моделі вікових змін вмісту PrP^C, активності АТФ-аз, вмісту іонів та кальцію у пріон-реплікувальних органах. Використовуючи результати проведених досліджень, побудовані просторові моделі, які відображають кількісні онтогенетичні зміни досліджуваних біохімічних показників у порожній кишці, селезінці, печінці, нирках, стегновому м'язі, довгастому мозку та мозочку (рис. 3.68–3.69).

Рис. 3.68. Модель вікових змін показників у порожній кишці (*a*), селезінці (*б*), печінці (*в*) та нирках (*г*): вміст PrP^{C} за даними 1 – вестерн блот; 2 – дот блот; 3 – імуногістохімічного аналізу; 4 – активність $Na^+-K^+-AT\Phi$ -ази; 5 – вміст Na^+ ; 6 – вміст K^+ ; 7 – активність $Ca^{2+}-AT\Phi$ -ази ЕПС; 8 – активність $Ca^{2+}-AT\Phi$ -ази ПМ; 9 – вміст кальцію